Thornton \& Marion $5^{\text {th }}$ Edition Problem 2-43

A particle is under the influence of a force $\mathrm{F}=-\mathrm{kx}+\frac{k}{\alpha^{2}} x^{3}$ where k and α are constants and k is always positive. Determine the potential energy and discuss the motion. What happens when $E=\frac{1}{4} \mathrm{k} \alpha^{2}$.

Define the function:

$$
\text { Force }\left[x _\right]=-k * x+\frac{k}{\alpha^{2}} * x^{3} \text {; }
$$

Integrate to find the potential energy:

$$
\begin{aligned}
& \text { PotEnergy }=-\int \text { Force }[x] d x \\
& \frac{k x^{2}}{2}-\frac{k x^{4}}{4 \alpha^{2}}
\end{aligned}
$$

Define the constants with random values:

$$
\begin{aligned}
& \mathrm{k}=2 ; \\
& \alpha=3 ;
\end{aligned}
$$

Plot U to show maxima and minima:

pPotEnergy =

Plot $[$ PotEnergy, $\{x,-5,5\}$, BaseStyle $\rightarrow\{$ FontFamily \rightarrow Helvetica, FontSize \rightarrow 12, FontColor \rightarrow RGBColor[0, 0.5, 0]\}, Ticks \rightarrow None, PlotRange $\rightarrow\{-5,5\}$, PlotPoints $\rightarrow 100$, PlotStyle $\rightarrow\{\{$ RGBColor[0, 0.5, 0], Thickness[0.0075]\}\}, PlotLabel \rightarrow "Potential Energy"]

Find the maxima and minima of the potential energy. Since these occur where $\frac{d U}{d x}=-F=0$, find the values for this.

Clear $[\mathbf{k}, \alpha]$
Solve $\left[-\mathbf{k} * x+\frac{\mathrm{k}}{\alpha^{2}} * x^{3}=0, x\right]$
$\{\{x \rightarrow 0\},\{x \rightarrow-\alpha\},\{x \rightarrow \alpha\}\}$

The potential energy, $U(x)=\frac{k x^{2}}{2}-\frac{k x^{4}}{4 \alpha^{2}}$, at the maxima, $U\left(x_{\max }\right)=U(\pm \alpha)$ and $U(0)$ are

$$
\begin{aligned}
& U(\pm \alpha)=\frac{\mathrm{k} \alpha^{2}}{2}-\frac{\mathrm{k} \alpha^{4}}{4 \alpha^{2}}=\frac{\mathrm{k} \alpha^{2}}{4} \text { and } \\
& U(0)=0 .
\end{aligned}
$$

Thus when $E=T+U=\frac{k \alpha^{2}}{4}, E=U(\pm \alpha)$ so that $T=O$ at these points. Thus the particle is bound as shown in the plot below for the values of k and α above.

$$
\begin{aligned}
& \mathrm{k}=2 ; \\
& \alpha=3 ; \\
& \frac{\mathbf{k} * \alpha^{2}}{4} \\
& \frac{9}{2}
\end{aligned}
$$

p2PotEnergy =

$$
\text { Plot }[\text { PotEnergy, }\{x,-5,5\} \text {, BaseStyle } \rightarrow\{\text { FontFamily } \rightarrow \text { Helvetica, FontSize } \rightarrow 12 \text {, FontColor } \rightarrow \text { RGBColor }[0,0.5,0]\}
$$

$$
\text { PlotRange } \rightarrow\{-5,5\} \text {, PlotPoints } \rightarrow 20 \text {, Frame } \rightarrow \text { True, FrameStyle } \rightarrow \text { White, }
$$

$$
\text { FrameTicks } \rightarrow\left\{\left\{\left\{\left\{4.5, " E=\frac{1}{4} \mathrm{k} \alpha^{2 \prime \prime}\right\}\right\},\left\{\left\{4.5, " E=\frac{1}{4} \mathrm{k} \alpha^{2} "\right\}\right\}\right\},\left\{\left\{\left\{-3, "-\alpha^{\prime \prime}\right\},\{3, " \alpha "\}\right\},\left\{\{-3, "-\alpha "\},\left\{3, " \alpha^{\prime \prime}\right\}\right\}\right\}\right\},
$$

FrameTicksStyle \rightarrow Directive $[$ Blue $]$, GridLines $\rightarrow\{\{\{-3$, Blue $\},\{3$, Blue $\}\},\{\{4.5$, Blue $\}\}\}$,
PlotStyle $\rightarrow\{$ RGBColor[0, 0.5, 0]\}, PlotLabel \rightarrow "Potential Energy"]
Potential Energy

